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Abstract
In quantum scattering on networks, there is a nonlinear composition rule for on-
shell scattering matrices which serves as a replacement for the multiplicative
rule of transfer matrices valid in other physical contexts. In this paper, we
show how this composition rule is obtained using Berezin integration theory
with Grassmann variables.
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Mathematics Subject Classification: 81U20, 05C50, 34L25

In memory of Al B Zamolodichikov

1. Introduction

Potential scattering for one particle Schrödinger operators on the line possesses a remarkable
property concerning its (on-shell) scattering matrix given as a 2 × 2 matrix-valued function
of the energy. Let the potential V be given as the sum of two potentials V1 and V2 with
disjoint support. Then the scattering matrix for V at a given energy is obtained from the two
scattering matrices for V1 and V2 at the same energy by a certain nonlinear, noncommutative
but associative composition rule. This fact in quantum scattering theory on the line has
been discovered independently by several authors (see, e.g. [1, 21, 24, 27, 28] and is an
easy consequence of the multiplicative property of the transfer matrix of the Schrödinger
equation (see, e.g. [17]). It has also been well known in the theory of mesoscopic systems
and multichannel conductors (see, e.g. [2, 6–10, 12, 23, 31, 32]). In higher space dimensions
a similar rule is unlikely to exist due to the defocusing of wave packets under propagation.
However, for large separation between the supports of the potentials the scattering matrix at a
given energy may asymptotically be expressed in terms of the scattering matrices for V1 and
V2 at the same energy [15–17].
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To the best of our knowledge the composition rule for 2 × 2 scattering matrices was first
observed in the context of electric network theory by Redheffer [25, 26], who called it the
star product. Now there are situations, where the concept of a transfer matrix cannot always
be introduced but where the (on-shell) scattering matrix nevertheless exists. An important
example is given by quantum-dynamical models on graphs, that is quasi-one-dimensional
quantum systems and which are described by Schrödinger operators. Such systems are
nowadays a subject of intensive study (see, e.g. [4, 11, 22] and references quoted there). In the
article [18], a composition rule, called the generalized star product, was introduced and further
analyzed in [19]. This composition rule extends the star product of Redheffer and allows one
to obtain the on-shell scattering matrix on a given graph from the on-shell scattering matrices
associated with sub-graphs. The generalized star product is defined for arbitrary matrices but
for unitary matrices the outcome is also unitary.

In this paper, we provide a new way of obtaining the generalized star product. The
method is based on the Grassmannian (fermionic) integration theory given by Berezin [3] and
it evaluates certain Gauss–Grassmann integrals. In addition, we also show how one can arrive
at the generalized star product using ordinary Gaussian (bosonic) distributions. Then, however,
one has to work with a restriction, the covariances have to be positive-definite matrices.

This technique of using Gaussian integration with fermionic fields permits an action
formulation of some network models. Thus for example it can be applied to the Chalker–
Coddington network model [5] to describe plateau transitions in the quantum Hall effect [29].
The method is also very convenient for an investigation of models with a large number of
scattering centers. In this limit, as well as at the critical point, one can give an equivalent
quantum field theoretic formulation of network models [30].

The paper is organized as follows. In the following section in order to establish notation
and for the convenience of the reader we briefly recall the basic notions of Berezin’s theory.
Though most of the material can be found in standard text books of quantum field theory, see,
e.g. [14, 33], the relations we need seem not to be so easily accessible. In section 4, we show
how to obtain the generalized star product using Gauss–Grassmann integrals. In the appendix
we briefly discuss the corresponding bosonic version, that is how the generalized star product
can be obtained from the standard theory of Gaussian distributions.

2. Preliminaries

In this section, we first briefly review the Grassmann integration and then we recall some
concepts from graph theory that we will need.

2.1. Grassmann integration

In this subsection we briefly recall the basic notions concerning Grassmann variables and
the associated integration theory, see [3], and which we will need. Let ai, ai be Grassmann
variables, which means they anti-commute

aiaj = −ajai, aiaj = −ajai, aiaj = −ajai .

We denote the associated (complex) Grassmann algebra with unit I by AI . Elements α in AI

have a unique representation in the form

α = α(a, a) =
∑

J,K⊆I

cJ,KaJ aK, cJ,K ∈ C (2.1)
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with the anti-ordered and ordered products

aJ =
�∏

j∈J
aj , aK =

�∏
j∈K

aj , J �= ∅,K �= ∅
and a∅ = a∅ = I. By definition

α(a = 0, a = 0) = cJ=∅,K=∅. (2.2)

Correspondingly the subalgebra generated by the elements aj , aj with i ∈ J will be
denoted by AJ . In addition we introduce symbols dai and dai which anti-commute among
themselves and with ai, ai and define the anti-ordered and ordered products

daJ =
�∏

j∈J
daj , daK =

�∏
j∈K

daj .

(Berezin-)Integration over L ⊆ I is defined as∫
aJ aK daL daL =

{
0 L �⊆ J or L �⊆ K

(−1)|L| signL
JK aJ\LaK\L L ⊆ J and L ⊆ K

(2.3)

where signL
JK = ±1 is defined when L ⊆ J and L ⊆ K and is such that

aJ aK = signL
JKaJ\LaK\LaLaL

holds. We call daLdaL the volume form associated with the index set L. From definition (2.3)
it is easy to see that integration may be performed in steps (Fubini’s theorem), an observation
which will become important in our discussion. As a special case of (2.3) and with α ∈ AI

written in the form (2.1)∫
α daI daI = (−1)|I |cI,I . (2.4)

In analogy to the Lebesgue integral over R
n this integral exhibits a translation invariance in

the following form. Introduce additional Grassmann variables bi, bi , again with the index i
in I and which anti-commute with all the previous Grassmann variables. With α(a, a) as in
(2.1), by α(a − b, a − b) we understand the expression

α(a − b, a − b) =
∑

J,K⊆I

cJ,K(a − b)J (a − b)K (2.5)

with the anti-ordered and ordered products

(a − b)J =
�∏

j∈J
(aj − bj ), (a − b)K =

�∏
j∈K

(a − b)j .

Expanding each (a − b)J (a − b)K into a sum of monomials aJ ′aK ′ it is easy to establish
translation invariance of the integral in the form∫

α(a − b, a − b) daI daI =
∫

α(a, a) daI daI

or even more generally∫
α(a − b, a − b; b, b, c, c) daI daI =

∫
α(a, a; b, b, c, c) daI daI , (2.6)

valid as a relation in B, the Grassmann algebra generated by bi and bi and possibly additional
Grassmann variables ck and ck . This seemingly trivial relation will also become very useful
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below. Let A be any complex n × n matrix and choose In = {1, 2, . . . , n} to be the index set.
Set

a · Aa =
∑

1�i,j�n

aiAij aj .

The Gauss–Grassmann integral can be calculated as∫
e−a·Aa daIn

daIn
= det A, (2.7)

the Gaussian distribution analogue of which is relation (A.2) in the appendix. In a further
analogy to ordinary Gaussian distributions, see (A.3) below, we obtain∫

ai e−a·Aa daIn
daIn

=
∫

ai e−a·Aa daIn
daIn

= 0∫
aiaj e−a·Aa daIn

daIn
= det AA−1

ij .

(2.8)

We need an extension of (2.7) when det A �= 0. Set

b · a = −a · b =
∑

1�i�n

biai, a · b = −b · a =
∑

1�i�n

aibi .

Then one can prove∫
e−a·Aa+b·a+a·b daIn

daIn
= det A eb·A−1b (2.9)

by using the translation invariance (2.6) of the integral and by completing the square in the
exponent. Finally we provide a variant of (2.9), which will become important below. For any
1 � p � n consider Ip as a subset of In and let I c

p = {p + 1, . . . , n} be its complement. Let

a(1), a(1) denote the set of Grassmann variables ai, a1 with 1 � i � p and a(2), a(2) those
with p + 1 � i � n. For a matrix A as before, consider the corresponding matrix block
decomposition

A =
(

A11 A12

A21 A22

)
. (2.10)

where A11 is a p × p matrix, A12 a p × (n − p) matrix, etc and set

a(1) · A11a
(1) =

∑
1�i,j�p

aiAij aj , a(1) · A12a
(2) =

∑
1�i�p,p+1�j�n

aiAij aj

a(2) · A21a
(1) =

∑
p+1�i�n,1�j�p

aiAij aj , a(2) · A22a
(2) =

∑
p+1�i,j�n

aiAij aj

(2.11)

such that

a · Aa = a(1) · A11a
(1) + a(1) · A12a

(2) + a(2) · A21a
(1) + a(2) · A22a

(2) (2.12)

holds.

Lemma 2.1. Let the (n − p) × (n − p) matrix A22 be invertible and set

Â = A11 − A12A
−1
22 A21,

a p × p matrix. Then∫
e−a·Aa daIc

n
daIc

n
= det A22 · e−a(1)·Âa(1)

(2.13)
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holds. Therefore the relation

det A = det A22 · det Â (2.14)

is valid. If in addition Â is invertible, the matrix elements of its inverse are the corresponding
ones for A−1

Â−1
ij = A−1

ij , 1 � i, j � p. (2.15)

Proof. We use the decomposition (2.12) and complete the square to obtain

e−a·Aa = e−(a(2)+A−1T
22 AT

21a
(1))·A22(a

(2)+A−1
22 A21a

(1)) e−a(1)·Âa(1)

and (2.13) follows from (2.7) and translation invariance. Equation (2.14) in turn follows from
(2.7) by integrating (2.13) out over the Grassmann variables ai, ai with i ∈ Ip. As for the last
claim, if Â is invertible, then so is A by (2.14) (and conversely under the present assumption
that A22 is invertible). By the last relation in (2.8) and by (2.13) for all 1 � i, j � p

det Â · Â−1
ij =

∫
aiaj e−a·Âa daIp

daIp

= 1

det A22

∫
aiaj e−a·Aa daIn

daIn
= det A

det A22
· A−1

ij

and (2.15) follows from (2.14). �

Remark 2.2. If A22 is not invertible, the left-hand side of (2.13) is still well defined but not
the right-hand side. Relation (2.14) also follows from the factorization of a block matrix. It
involves the Schur complement of A22, which is just Â, see, e.g. [13, 34]. In addition the
inverse of the Schur complement enters the inverse of A as one block part and this is just
relation (2.15) (

A11 A12

A21 A22

)−1

=
(

Â−1 −Â−1A12A
−1
22

−A−1
22 A21Â

−1 A−1
22 + A−1

22 A21Â
−1A12A

−1
22

)
. (2.16)

2.2. Some basic concepts from graph theory

We first recall some notions, which will be useful in the following. A finite noncompact graph
is a 4-tuple G = (V, I, E, ∂), where V is a finite set of vertices, I is a finite set of internal
edges and E is a finite set of external edges. Set

n(V) = |V|, n(I) = |I|, n(E) = |E|,
the number of elements in these sets. We assume each of these sets V, E, I to be ordered in
some arbitrary but fixed way. This induces an ordering in E ∪ I, where by definition elements
in E come first. On the product set (E ∪ I) × V by definition the induced ordering � is such
(i, v) � (i ′, v′) if and only if v ≺ v′ or v = v′ and i � i ′. Elements in I ∪ E are called edges.
The map ∂ assigns to each internal edge i ∈ I an ordered pair of (possibly equal) vertices
∂(i) := {v1, v2} and to each external edge e ∈ E a single vertex v. The vertices v1 =: ∂−(i)

and v2 =: ∂+(i) are called the initial and final vertices of the internal edge i, respectively.
The vertex v = ∂(e) is the initial vertex of the external edge e. If ∂(i) = {v, v}, that is,
∂−(i) = ∂+(i) then i is called a tadpole. However, to facilitate our exposition, we will exclude
tadpoles. Two vertices v and v′ are adjacent, if there is i ∈ I such that these vertices form
∂(v). To any v ∈ V we associate the set of edges terminating at v, I(v) = {i ∈ E∪I|v ∈ ∂(i)}.
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V (v1, v3)

V (v1, v2)

V (v2, v3)

X(v1) X(v2)

X(v3)

Figure 1. A graph with three vertices, seven external and six internal edges. X(v1) is a 8×8, X(v2)

a 6 × 6 and X(v3) a 5 × 5 matrix. V (v1, v2) is a invertible 3 × 3 matrix, V (v2, v3) is just a non-
vanishing complex number, while V (v1, v3) is an invertible 2 × 2 matrix.

We set n(v) = |I(v)|, the number of edges terminating at v. Each of these sets inherits an
ordering from the ordering of E ∪ I. Also

n(v, v′) = n(v′, v) = |I(v) ∩ I(v′)|, v �= v′

is the number of (internal) edges connecting v with v′, so n(v, v′) � min(n(v), n(v′)). n(v, v′)
is called the connectivity matrix of the graph G. I(v)∩I(v′) ⊆ I holds for v �= v′ and likewise
this set inherits an ordering from the ordering of I. As (unordered) sets each I(v) is a disjoint
union

I(v) = (I(v) ∩ E) ∪v′:v′ �=v (I(v) ∩ I(v′)).
By definition, a graph is compact if E = ∅, otherwise it is noncompact. Throughout the
whole work we will assume that the graph G is connected, that is, for any v, v′ ∈ V there is
an ordered sequence {v1 = v, v2, . . . , vn = v′} such that any two successive vertices in this
sequence are adjacent. In particular, this implies that any vertex of the graph G has nonzero
degree, i.e., for any vertex v there is at least one edge with which it is incident, n(v) > 0. In
addition n(I) � n(V) − 1 is valid. By definition a star graph is a connected graph which has
no internal edges, only one vertex and at least one external edge.

A graph can be equipped as follows with a metric structure. To any internal edge i ∈ I
we associate an interval [0, ai] with ai > 0 such that the initial vertex of i corresponds to
x = 0 and the terminal one—to x = ai . Any external edge e ∈ E will be associated with a
semi-line [0,∞) such that ∂(e) corresponds to x = 0. We call the number ai the length of the
internal edge i. The set of lengths {ai}i∈I , which will also be treated as an element of R

|I|,
will be denoted by a. A compact or noncompact graph G endowed with a metric structure is
called a metric graph (G, a).

3. The fermionic construction

Given a graph G, we introduce the following data. To each vertex v we associate a complex
n(v) × n(v) matrix X(v) indexed by the set I(v). We call X(v) a vertex matrix. In addition,
complex, invertible n(v, v′) × n(v, v′) matrices V (v, v′) are given for any pair v �= v′. The
associated index sets are I(v) ∩ I(v′) and they are supposed to satisfy

V (v, v′) = V (v′, v)−1. (3.1)

V (v, v′) is called a connecting matrix between v and v′. We write XG = {X(v)}v∈V and
V G = {V (v, v′)}v �=v′∈V for these two sets of data. Figure 1 gives a pictorial description for a
graph with three vertices.
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Remark 3.1. Within the context of scattering on quantum graphs, see [18, 19] X(v) is the
unitary scattering matrix S(v;E) at energy E > 0 on a single-vertex graph with n(v) external
edges and V (v, v′) is a unitary diagonal matrix

V (v, v′) = diag(ei
√

Eai )i∈I(v)∩I(v′). (3.2)

We also introduce a total of 2(|E| + 2|I|) anti-commuting Grassmann variables

ηe,v, ηe,v, dηe,v, dηe,v, e ∈ E, v = ∂(e)

ηi,v, ηi,v, dηi,v, dηi,v, i ∈ I, v ∈ ∂(i)
(3.3)

and the associated volume forms given as the anti-ordered and ordered products

dηE dηE =
�∏

e∈E,v=∂(e)
dηe,v

�∏
e∈E,v=∂(e)

dηe,v

dηI dηI =
�∏

i∈I,v∈∂(i)
dηi,v

�∏
i∈I,v∈∂(i)

dηi,v

dηE∪I dηE∪I = dηE dηE dηI dηI = dηE dηI dηE dηI = dηE dηI dηI dηE .

(3.4)

Recall that I(v)∩ E may be non-empty, so in order to have a compact notation we have added
the index v = ∂(e) in the definition of ηe,v . On the other hand, I(v) ∩ I(v′) ∩ E is always
empty. For further reference we write

(E ∪ I)  V = {i, v}i∈I(v),v∈V ⊂ (E ∪ I) × V (3.5)

for this index set and with the ordering induced by that of (E ∪ I) × V . Set

η · L(v)η =
∑

i,j∈I(v)

ηi,vX(v)ij ηj,v

η · L(v, v′)η = −
∑

i,j∈I(v)∩I(v′)

ηi,vV (v, v′)ij ηj,v′
(3.6)

with the convention that η ·L(v, v′)η = 0 if I(v)∩I(v′) = ∅. Define the quadratic, fermionic
Lagrangian as

η · LGη =
∑

v

η · L(v)η +
∑
v �=v′

η · L(v, v′)η. (3.7)

We decompose the set of Grassmann variables into exterior and interior variables

ηE = {ηe,v=∂(e)}e∈E , ηE = {ηe,v=∂(e)}e∈E
ηI = {ηi,v}i∈I,v∈∂(i), ηI = {ηi,v}i∈I,v∈∂(i)

and correspondingly we set

η · LGη = ηE · LEηE + ηE · LE,IηI + ηI · LI,EηE + ηI · LIηI

= (
ηI +

(
L−1
I

)T
(LE,I)

T ηE
) · LI

(
ηI + L−1

I LI,EηE
)

+ ηE · (
LE − LE,IL−1

I LI,E
)
ηE . (3.8)

In analogy to (2.10) the first line just corresponds to the following block matrix representation:

LG =
(

LE LE,I
LI,E LI

)
(3.9)

up to a different index ordering. Provided the matrix LI is invertible, we may define its Schur
complement

KG = LE − LE,IL−1
I LI,E . (3.10)

7
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V (v1, v2)

X(v1) X(v2)

i1 i1
i2 i2
i3 i3
i4 i4
i5 i5

e1

e2

e3

e4

e5

Figure 2. Pictorial description of a two-vertex graph G2 appearing in the definition of the
generalized star product. X(v1) is an 8×8 matrix, X(v2) a 7×7 matrix and V (v1, v2) a 5×5 matrix.
The graph has five external edges e1, . . . , e5 and five internal edges i1, . . . , i5. The index orderings
of E ∪ I and hence of I are E ∪ I = {e1, . . . , e5, i1, . . . , i5}, I = {i1, . . . , i5} = I(v1) ∩ I(v2)

with I(v1) = {e1, e2, e3, i1, . . . , i5}, I(v2) = {i1, . . . , i5, e4, e5}. LG2 is a 15 × 15 matrix and LE
a 5 × 5 matrix.

It will also be convenient to introduce the notation

TG = LI (3.11)

in order to indicate the dependence on G.

Theorem 3.2. If LI is invertible, then∫
e−η·LGη dηI dηI = det TG · e−ηE ·KGηE (3.12)

and thus also detLG = det TI · detKG hold. In particular, if in addition LG is invertible, then
KG is also invertible and the matrix elements of its inverse are those of the corresponding ones
for L−1

G itself (
K−1

G
)
e,v=∂(e);e′,v′=∂(e′) = (

L−1
G

)
e,v=∂(e);e′,v′=∂(e′). (3.13)

Proof. In view of (3.8), this theorem is a direct consequence of lemma 2.1. �

3.1. The generalized star product and two-vertex graphs

In this subsection we will show, how in the case of any two-vertex graph G2 the above
construction of KG2 out of LG2 is also obtained from the generalized star product introduced
in [18, 19]. The vertices are denoted as v1 and v2. Figure 2 serves as an illustration. Let the
matrix X(v1), indexed by I(v1), be given in a 2 × 2 block form

X(v1) =
(

A B

C D

)
(3.14)

where A is an n1 × n1 matrix, B an n1 × p matrix, C an p × n1 matrix and finally D a p × p

matrix. Here n1 = |E ∩ I(v1)| is the number of external edges e terminating at v1, that is
∂(e) = v1. p = n(I) the number of internal lines such that n1 + p = n(v1). Thus for example
A is indexed by E ∩ I(v1) while D is indexed by I ∩ I(v1). Similarly, write X(v2), indexed
by I(v2) = (I(v1)), in a 2 × 2 block matrix form

X(v2) =
(

E F

G H

)
(3.15)

where H is a p × p matrix, G is a p × m1 matrix, etc. Here m1 = |E ∩ I(v2)| is the number
of external edges e terminating at v2, that is ∂(e) = v2. Thus for example E is indexed by

8
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E ∩ I(v2). Then the (n1 + p + m1 + p) × (n1 + p + m1 + p) matrix LG2 , which is obtained from
X(v1),X(v2) and V = V (v1, v2), takes the form

LG =

⎛⎜⎜⎝
A B 0 0
C D 0 −V −1

0 0 E F

0 −V G H

⎞⎟⎟⎠
︸︷︷︸

n1

︸︷︷︸
p

︸︷︷︸
m1

︸︷︷︸
p

(3.16)

which in a canonical way is indexed by the set (E ∪ I)  V . This gives

LE =
(

A 0
0 E

)
, LE,I =

(
B 0
0 F

)
LI,E =

(
C 0
0 G

)
, TG2 = LI =

(
D −V −1

−V H

) (3.17)

where LE is a |E| × |E| matrix, etc. Therefore by (3.10)

KG2 =
(

A 0
0 E

)
−

(
B 0
0 F

)(
D −V −1

−V H

)−1 (
C 0
0 G

)
=

(
A − B(D − V −1H−1V )−1C −B(D − V −1H−1V )−1V −1H−1G

−F(H − V D−1V −1)−1V D−1C E − F(H − V D−1V −1)−1G

)
. (3.18)

We have used (2.16) by which(
D −V −1

−V H

)−1

=
(

(D − V −1H−1V )−1 (D − V −1H−1V )−1V −1H−1

(H − V D−1V −1)−1V D−1 (H − V D−1V −1)−1

)
and we have assumed the matrix TG2 = LI to be invertible. Alternatively, by theorem 3.2, if
L−1
G2

is written in 4 × 4 block form like LG2

L−1
G2

=

⎛⎜⎜⎝
α · β ·
· · · ·
γ · δ ·
· · · ·

⎞⎟⎟⎠
then

K−1
G2

=
(

α β

γ δ

)
(3.19)

holds. This can be checked by calculating the inverse of LG2 , a tedious but straightforward
calculation using (2.16) iteratively. Moreover we have

Lemma 3.3. Assume TG2 = LI to be invertible, such that KG2 is well defined. Then the
generalized star product X(v) �V (v,v′) X(v′) as introduced in [18] is also well defined and
both these quantities are equal.

Proof. In the present notation, where we recall V = V (v, v′),

X(v) �V (v,v′) X(v′) =
(

A + BK2HV C BK2G

FK1C E + FK1DV −1G

)
(3.20)

holds with

K1 = (I − V DV −1H)−1V = V (I − DV −1HV )−1

K2 = (I − V −1HV D)−1V −1 = V −1(I − HV DV −1)−1,
(3.21)

9



J. Phys. A: Math. Theor. 42 (2009) 304019 S Khachatryan et al

see section 4 in [18] and section 3 in [19]. We use the relations

(D − V −1H−1V )−1 = −(I − V −1HV D)−1V −1HV = −K2HV

(H − V D−1V −1)−1 = −(I − V DV −1H)−1V DV −1 = −K1DV −1,

insert this into (3.18). Comparison with (3.20) gives the claim. �

3.2. The generalized star product and arbitrary graphs

We are now able to extend this comparison to the case where the graph has more than two
vertices. The idea for this alternative is to carry out the integrations in (3.12) in steps while
using iteratively the Grassmannian–Gaussian construction of the star product as given in the
previous subsection. This proof will give a more explicit representation of KG and TG in terms
of the original data G, XG and V G . It is important to recall that the data uniquely fix LG . So this
alternative proof will be by induction on the number of vertices, by which we will construct
a sequence of connected graphs Gl with l vertices such that Gl=n(V) = G. Similarly we will
provide inductively Kl—with KGl=n(V)

= KG—and T
l
, the last one will be given recursively in

the form

Tl = Tl−1 ⊕ T l (3.22)

with suitable T l and where by definition T 1 = 1 . Here and in what follows we make the
notational convention that for any two square matrices M1 and M2 their direct sum M1 ⊕ M2

is identified with the 2 × 2 block matrix(
M1 0
0 M2

)
.

We first construct the Gl inductively. As for the case l = 1, choose any vertex and call it
v1. Let G1 denote a star graph with n(v1) external lines labeled by I(v1) as for the graph
G itself. Assume that we have constructed the connected graph Gl with the set of vertices
Vl = {v1, . . . , vl}, named like those of G. Also the edges i ∈ Gl with vk ∈ ∂(i) are in
one-to-one correspondence with the edges in G having vk in their boundary. Thus we may use
I(vk) to index these edges. Furthermore the sets of external and internal edges in Gl are such
that

El ∪ Il = ∪1�k�lI(vk)

Il = ∪1�k �=k′�l(I(vk) ∩ I(vk′)).
(3.23)

To obtain Gl+1 from Gl , observe there is a vertex in G, denoted vl+1, such that

n̄(vl+1) =
l∑

k=1

n(vk, vl+1) > 0.

Gl+1 is obtained as follows. Take Gl and a single-vertex graph with vertex denoted by vl+1 and
with n̄(vl+1) edges emanating. Call this graph Ḡ(vl+1). Label its edges by the elements in
∪k�l (I(vk) ∩ I(vl)). Glue each edge i ∈ I(vk) ∩ I(vl) in Ḡ(vl+1) to the edge with the same
index in Gl . In case G is a metric graph with set of internal edge lengths a, give the resulting
internal edge i in Gl+1 the length ai . To sum up, the resulting graph Gl+1 has n(vk, vl+1) edges
connecting vk with vl+1 in Gl+1. In total Gl+1 thus obtained has edges which also are of the
form (3.23) with l being replaced by l + 1. This concludes the inductive construction of the
graphs and gives G as Gl=n(V).

Vl can be viewed as a subset of V and that by (3.23) El ∪ Il can be viewed as a subset of
both El+1 ∪ Il+1 and E ∪ I. Similarly, Il can be viewed as a subset of both Il+1 and I. For the

10
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El similar relations, however, are not valid, since an edge in El−1 can turn into an edge in Il .
More explicitly we introduce the sets

Īl = El−1 ∩ Il = ∪k:k<l (I(vk) ∩ I(vl)) (3.24)

which will be used in the following. They satisfy

Īl ∩ Īl′ = ∅, l �= l′; ∪1�l�n(V)Īl = I. (3.25)

Pictorially this construction can be understood as follows. Gl is obtained from G by cutting
any internal edge, which connects any vertex vk(1 � k � l) to any vertex v different from
vk′(1 � k′ � l). Any such edge is then replaced by an infinite half-line. As a consequence of
this discussion

Īl  Vl ⊆ (El ∪ Il)  Vl ⊂ (El+1 ∪ Il+1)  Vl+1 ⊆ (E ∪ I)  V, 1 � l � n(V) − 1,

(3.26)

which induces an ordering on these sets. In order to construct the Kl we introduce the
matrices

V (vl) = V (v1, vl) ⊕ V (v2, vl) . . . ⊕ V (vl−1, vl), l � 2 (3.27)

which are invertible. Thus in the example given by figure 1 V (vl=3) is a 3 × 3 matrix.
Set K1 = X(v1) and inductively

Kl+1 = Kl � V (vl+1)
X(vl+1). (3.28)

In particular, K2 is just as given by lemma 3.3. We note that the invertibility of a certain
matrix is necessary, see the discussion of TG2 in section 3.1. So if the invertibility of
certain matrices holds—see also below—the associativity of the generalized star product [18]
gives

Kl = X(v1) �V (v1,v2) X(v2) �V (v3)
X(v3) . . . �V (vn(l))

X(vl). (3.29)

We now repeat this construction by performing Grassmann integration over

e−η·LGη

in steps. In order to do this we view Gl as a single-vertex graph with a vertex denoted by v̄l

and with edges labeled by El . Combine it with the single-vertex graph Ḡ(vl+1) and with the
connecting matrix given as V (v̄l, vl+1) = V (vl+1). Correspondingly we take as data for Gl+1

Xl+1 = {Kl , X(vl+1)}, V l+1 = {V (v̄l, vl+1) = V (vl+1)} (3.30)

and out of this we form the fermionic Lagrangean

η · Ll+1η = η · KGl
η + η · X(vl+1)η − η · V (vl+1)η. (3.31)

In order not to burden the notation, we have not stated explicitly, which Grassmann variables
out of the set (3.3) are involved. Indeed, those which are involved can be read off the index
set associated with the matrices Kl , X(vl+1) and V (vl+1).

With this notational convention and by lemma 3.3 we obtain

det T l+1 · e−η·Kl+1η =
∫

e−η·Ll+1η dηĪl+1
dηĪl+1

. (3.32)

where T l+1 = (Ll+1)Īl+1
—in an adaption of the notation used in (3.8)—is invertible. We recall

that by definition T 1 = 1. This concludes the recursive construction of Gl ,Kl and

Tl = ⊕l
k=1T k. (3.33)

11
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We iterate recursion (3.32) in combination with recursion (3.31), use (3.22), (3.25) and
(3.29) to obtain

det Tl=n(V) · e−η·Kl=n(V)η =
∫

e−η·LGη dηI dηI . (3.34)

Comparison with (3.12), while keeping remark 1 in mind, gives the main result of this paper.

Theorem 3.4. Assume that the matrices TG and T l are all invertible, such that all Tl are
also invertible. Then the quantities KG and det TG as given by (3.12) are equal to Kl=n(V) and
det Tl=n(V), respectively, where Kl=n(V) and Tl=n(V) are defined by (3.29) and (3.33).

Without proof we state that under the assumptions stated actually TG � Tl=n(V) holds.

Corollary 3.5. For a given graph G let the data XG and V G consist of unitaries. Under the
corresponding invertibility assumptions, KG is also unitary as are in fact all KGl

.

Proof. This follows from the theorem and the results in [18, 19]. �

4. Conclusions

The result presented in this article is relevant in the context of quantum scattering theory on
metric graphs. So the main purpose of this article is mainly pedagogical. The aim was to show
how the scattering matrix can be obtained from basic building blocks by simple and well known
mathematical techniques. Indeed, in this context KG is the scattering matrix at a fixed energy
E associated with the entire metric graph G. The metric enters through the connecting matrices
given in the form (3.2). The other building blocks, that is the vertex matrices, are the single
vertex scattering matrices at the same energy E, see Remark 3.1. These scattering matrices
have been used to study spin transport and conductance on quantum graphs, see [35–37].
More recently, another way of obtaining the scattering matrix by an iterative procedure, again
equivalent to the generalized star product procedure, has been given in [37]. It involves the
use of RT-algebras. Relation (3.36) in [20] provides yet another way to obtain this scattering
matrix in terms of the single vertex scattering matrices and connecting matrices. In addition
in [20] a series expansion of every matrix element is given. This expansion is indexed by so
called walks w with length |w| and has expansion coefficients of the form exp(i

√
E|w|) times

a monomial in the single vertex scattering matrix elements. It has been used to formulate a
new approach to the traveling salesman problem.
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Appendix A. The generalized star product and Gaussian integrals

In this appendix we give a bosonic discussion using Gaussian distributions. We start by
recalling some basic facts about Gaussian distributions, also in order to establish notation
and for the sake of comparison with our fermionic discussion. Let x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) denote elements in R

n and set

y · x =
n∑

i=1

yixi = x · y

12
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and for integration dx = ∏n
i=1 dxi denotes the infinitesimal volume element on R

n. Let A be
a real symmetric matrix, which in addition is positive (definite)

x · Ax =
n∑

i,j=1

xiXij xj > 0, x �= 0

and then we write A > 0. Then also det A > 0 and in addition A−1 exists, is real, symmetric
and positive. I denotes the unit matrix in the given context and A > A′ means x ·Ax > x ·A′x
for all x �= 0. If κI < A < μI, then μ−1

I < A−1 < κ−1
I.

We make the following notational convention. Here and in what follows, whenever
x ∈ R

n stands to the right of an m × n matrix A, then it is viewed as a column vector. The
outcome Ax will also be interpreted as a column vector in R

m. When x stands to the left of A

it will be viewed as a row vector.
Define the Gauss distribution with covariance A > 0 via its probability measure

dμA(x) = (det A)1/2

(2π)n/2
e− 1

2 x·Ax dx (A.1)

on R
n. That this is a probability measure follows from∫

x∈Rn

e− 1
2 x·Ax dx = (2π)n/2

(det A)1/2
(A.2)

and is the analogue of (2.7).
The first two moments of the measure dμA(x) are∫

Rn

xi dμA(x) = 0
∫

Rn

xixj dμA(x) = A−1
ij (A.3)

which are the analogues of (2.8).
Write any x ∈ R

n as x = (x(1), x(2)) with x(1) = (x1, . . . , xp) ∈ R
p, x(2) = (xp+1, . . . ,

xn) ∈ R
n−p and set

x(1) · A11x
(1) =

∑
i,j�p

xiAij xj , x(1) · A11x
(2) =

∑
i�p,p+1�j

xiAij xj

x(2) · A21x
(1) =

∑
p+1�i,j�p

xiAij xj , x(2) · A22x
(2) =

∑
p+1�i,j�p

xiAij xj

such that we have the decomposition

x · Ax = x(1) · A11x
(1) + x(1) · A12x

(2) + x(2) · A21x
(1) + x(2) · A22x

(2).

In other words, we use the 2 × 2 block decomposition (2.10) of the matrix A. Since A is
assumed to be positive definite, so are A11 and A22 and their inverses. Also A21 is the transpose
of A12. So Â = A11 − A12A

−1
22 A21 is a well-defined and symmetric p × p matrix. In fact it is

positive definite, see, e.g. [34]. Actually we need a stronger result.

Lemma A.1. If A > κI with κ > 0 holds, then also Â > κI is valid for the Schur complement
of A22.

Proof. Under the assumption 0 < A−1 < κ−1
I, hence also 0 < Â−1 < κ−1

I due to (2.16).
Taking the inverse gives Â > κI. �

We leave the proof of the following lemma to the reader. It is the analogue of lemma 2.1.

13
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Lemma A.2. The following relation holds∫
x(2)∈Rn−p

e− 1
2 x·Ax dx(2) = (2π)n−p/2

(det A22)
1/2 e− 1

2 x(1)·Âx(1)

. (A.4)

Since Â is positive definite, we may integrate (A.4) over x(1) and det A = det A22 · det Â
follows, which is relation (2.14), however, in the restricted context of positive A.

We turn to the generalized star product and a way to obtain it through Gaussian integrals.
Consider X(v1) and X(v2) of the form (3.14) and (3.15). We use the notation employed in
this context.

Proposition A.3. Assume X(v1) > κI, X(v2) > κI with κ > 1 and let V (v1, v2) be an
orthogonal p × p matrix. Then X(v1) �V (v1,v2) X(v2) > (κ − 1)I.

Proof. Let LG2 be as in (3.16) but now indexed from 1 to n1 + p + m1 + p. Also let the
orthogonal matrix V = V (v1, v2) = V (v2, v1)

−1 = V (v2, v1)
T be indexed from 1 to p. For

0 �= x ∈ R
n1+m1+2p by Schwarz inequality

x · LG2x =
∑

1�i,j�n1+p

xiX(v1)ij xj +
∑

n1+p+1�i,j�n1+m1+2p

xiX(v1)ij xj

−
∑

1�i,j�p

xn1+iVij xn1+p+m1+j −
∑

1�i,j�p

xn1+p+m1+iVjixn1+j > (κ − 1)x · x.

But X(v1) �V (v1,v2) X(v2) is a Schur complement by the discussion in subsection 3.1, that is
X(v1) �V (v1,v2) X(v2) = KG2 , and so the claim follows from lemma A.1. �

Write x = (z(1), z(2)) ∈ R
n1+m1+2p with z(1) = (x1, . . . , xn1 , xn1+2p+1, . . . , xn1+2p+m1) ∈ R

n1+m1

and z(2) = (xn1+1, . . . , xn1+2p) ∈ R
2p. Then with the notation used in section 3.1 and in the

proof of the lemma we obtain

Lemma A.4. With the assumptions as in lemma A.2 the relation∫
z(2)∈R2p

e− 1
2 x·LG2 x dz(2) = (2π)p

(det TG2)
1/2

e− 1
2 z(1)·KG2 z(1)

(A.5)

holds.

We turn to an arbitrary graph G with data XG and V G with the property that each X(v) is
positive definite and each V (v, v′) is orthogonal. Introduce the variable

x = {xi,v}i,v∈(E∪I)V = {xi,v}i,v:i∈I(v),v∈V ∈ R
|E |+2|I|,

let the matrices L(v) and L(v, v′) be as in (3.6) and set

x · L(v)x =
∑

i,j∈I(v)

xi,vX(v)ij xj,v

x · L(v, v′)x = −
∑

i,j∈I(v)∩I(v′)

xi,vV (v, v′)ij xj,v′ .
(A.6)

Define the quadratic, bosonic Lagrangian as

x · LGx =
∑

v

x · L(v)x −
∑
v �=v′

x · L(v, v′)x. (A.7)

We decompose x into its exterior and interior components, that is x = (xE , xI) with

xE = {xe,v=∂(e)}e∈E , xI = {xi,v}i∈I(v),v∈V .

14
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and correspondingly we get

x · LGx = xE · LExE + xE · LE,IxI + xI · LI,ExE + xI · LIxI

= (xI + (LI)
−1T (LE,I)

T xE) · LI(xI + (LI)
−1LI,ExE)

+ xE · (LE − LE,I(LI)
−1LI,E)xE . (A.8)

The following extension of lemma A.4 to arbitrary graphs is valid.

Proposition A.5. Given data XG = {X(v)}v∈G and V G = {V (v, v′)}v �=v′∈V with X(v) >

(n(V) − 1)I and orthogonal V (v, v′), the |E| × |E| matrix KG defined by∫
xI∈R2|I|

e− 1
2 x·LGx dxI = (2π)|I|

(det TG)1/2
e− 1

2 xE ·KGxE (A.9)

is positive definite.

Proof. We use representation (3.29) and lemma A.1 repeatedly. Observe that V (vl+1) defined
by (3.27) is also orthogonal. �
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